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Abstract. Rupture of intracranial aneurysms often leads to irreversible disabilities or even
death. The investigation of hemodynamics increases the understanding of cardiovascular dis-
eases, this gain of knowledge can support physicians in outcome prediction and therapy plan-
ning. Hemodynamic simulations are restricted by modeling assumptions and uncertain initial
conditions, whereas PC-MRI data is affected by measurement noise and artifacts. To overcome
the limitations of both techniques, the current study uses a Localization Ensemble Transform
Kalman Filter (LETKF) to incorporate uncertain Phase-Contrast MRI data into an ensemble
of numerical simulations. The analysis output provides an improved state estimate of the three-
dimensional blood flow field. Benchmark measurements are carried out in a silicone phantom
model of an idealized aneurysm under user-specific inflow conditions. Validation is ensured
with high-resolution Particle Imaging Velocimetry (PIV) obtained from a vertical slice in the
center of the same geometry. Results show that even velocity peaks smaller than the PC-MRI
resolution can be reconstructed using the employed approach. The root mean square error
(RMSE) of the analysis state estimate is reduced by 27 % to 89 % in comparison to interpola-
tion of the PC-MRI data onto the PIV grid resolution.
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1 INTRODUCTION

Computational Fluid Dynamics (CFD) has been frequently used in past studies for the inves-
tigation of hemodynamics in intracranial aneurysms. Flow-dependent parameters, such as wall
shear stress or the oscillary shear index, are meant to have an influence on the growth and rupture
probability of aneurysms [1–3]. However, such simulations require accurate initial and bound-
ary conditions, and depend on the assumptions used in the numerical model [4–6]. Although
high temporal and spatial resolution can be reached, uncertainties lead to a limited clinical
acceptance of the simulation results [7–9]. Phase-Contrast Magnetic Resonance Imaging (PC-
MRI) in-vivo measures blood flow by encoding the velocities in the phase of the acquired MR
signal [10–12]. In addition to measurement noise and artefacts, the limited temporal and spatial
resolution impact clinically-relevant flow features in the measurement data. The present study
incorporates uncertain measurement data into numerical simulations by using data assimilation
to improve the accuracy and physical correctness of the measured velocity fields. An Ensemble
Kalman Filter technique samples the system state and covariance matrices by an ensemble of
model states. Thus, the covariance matrices are not calculated directly, but estimated through
an ensemble and replaced by the sample covariance. The background uncertainty is estimated
and the Ensemble Kalman Filter (EnKF) can be seen as a Monte-Carlo approximation of the
original Kalman Filter [13].

Several attempts have been made to improve the accuracy of intracranial velocity fields ac-
quired from PC-MRI data. Whereas de-noising techniques, as well as divergence-free filtering
approaches, improve the physical correctness of the velocity field, spatial and temporal reso-
lution remains low e.g. [14, 15]. Hence, data assimilation seems to be a promising remedy to
improve resolution while keeping constraints, such as incompressibility and conservation laws.
Variational data assimilation approaches in intracranial anerysms have been applied by D’Elia
et al. [16–18] and Funke et al. [19]. As an alternative to the Ensemble Kalman Filters they min-
imize the error between observations of a reference flow and a numerical estimation in terms of
a cost function. The need for linear and adjoint models increases computational complexity by
a factor of 50 to 100 in comparison to one simple model simulation. As a consequence, most
numerical studies on variational data assimilation in intracranial aneurysms currently addresses
steady-state flow and/or 2D geometries. Funke et al. [19] investigates transient 3D flow fields,
but to keep computational costs in an acceptable range, spatial resolution is decreased. Although
promising results have been achieved for other fluid dynamical applications e.g. [20, 21], little
attention has been payed to the sequential Kalman Filters in intracranial aneurysm modeling.
Bakhshinejad et al. implemented an Extended Kalman Filter for pulsatile cardiac flow [22].
Nevertheless, the lack of localization requires a large amount of ensemble members to ensure
filter convergence. The resulting high computational costs illustrate the need for a sequential
data assimilation technique that can gain convergence with a limited amount of ensemble sim-
ulations.

Although the current study deals with steady-state 3D flow, this is the first approach using
a Localization Ensemble Transform Kalman Filter to assimilate CFD and PC-MRI data for
improved flow prediction in intracranial aneurysm. The study comes along with a systematic
analysis of parameters inside the algorithm. Additional uniqueness is ensured with a high qual-
ity PIV measurement of the same geometry which enables proper quantitative validation of the
assimilation step.
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2 MATERIAL and METHODS

Underlying CFD and measurement data for the assimilation step are obtained from the same
silicon phantom model of an idealized intracranial aneurysm (figure 1a). Afferent and efferent
vessels have a diameter of 4 mm. The phantom model, consisting of two-component silicon
(Wacker RT 601, Burghausen, Germany), is well suited because it allows blood flow measure-
ments with the MR device, as well as optical based PIV measurements. A blood substitute,
which was required to match both the fluid-dynamical properties of real blood as well as the
refractive index of the silicone block (=1.4122 at 22◦C) for optimal optical conditions within
the validation PIV measurements, was formulated.

2.1 Experimental Set-Up

The flow data was acquired on a 7 Tesla whole-body MRI system (Siemens Healthineers,
Forchheim, Germany) in a 32-channel head coil (Nova Medical, Wilmington, MA) using 4D
phase-contrast magnetic resonance imaging (PC-MRI). Hereby, the acquisition sequence is
based on a rf-spoiled gradient echo with quantitative flow encoding in all three spatial dimen-
sions [23, 24]. A micro-gear pump (HNP Mikrosysteme, Schwerin, Germany), placed in the
control room of the MRI scanner, delivered a constant flow rate of Q=227 mL/min throughout
the measurements (figure 1b). This relatively low flow rate was chosen to ensure laminar flow
inside the aneurysm which was needed for accurate validation of the data assimilation param-
eters. A total scan time of approx. 9 minutes achieves a resolution of 0.57x0.57x0.57 mm in
the resulting phase difference images. The same measurement but without activated pump and
thus without flow inside the aneurysm-phantom was acquired for reference. The reference data
was subtracted from the flow data to obtain purely flow related phase differences. As the flow
information is encoded in the phase of the complex MR-Signal, a velocity encode parameter
(venc) is necessary to specify the highest velocitiy, encoded in one complete phase. For the
aquired data, this parameter was set to 0.6 m/s. As a consequence, the signal-to-noise SNR of
the acquired images was calculated using the mean of the signal inside the aneurysm and the
signal density of the background noise and was found to be SNR ≈ 55. The data was post
processed using MeVisLab 2.3.1 and the automated tool described in [25]. This includes noise
masking, antialiasing and conversion to the format of the commercial software package EnSight
(ANSYS Inc., Canonsburg, PA, USA).

2.2 Numerical Background

The ensemble boundary conditions for the CFD simulations are obtained from the MRI blood
flow measurements with a specific mean (228 ml/min) and variance (10 ml/min). A structured
hexaedral mesh is created using ANSYS IcemCFD (ANSYS Inc., Canonsburg, PA, USA) re-
sulting in approx. 171.000 cells. Ensemble simulations are carried out using the open source
software OpenFOAM 5.0 (OpenCFD Ltd., Bracknell, UK). Blood is treated as an isothermal,
incompressible fluid (1222 kg/m3) and Newtonian behavior with a constant dynamic viscosity
(4.03 mPa s) is assumed. The vessel walls are assumed to be rigid and no-slip boundary condi-
tions and a zero pressure outlet are implemented. Convergence was obtained when the scaled
residuals of pressure and momentum decreased below a value of 10−6.

2.3 Data Assimilation Algorithm

The Local Ensemble Transform Kalman Filter applied in this paper was originally introduced
by Harlim and Hunt [27, 28] in the field of meteorology and combines the localization method
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(a)
(b)

Figure 1: (a) Surface model of the idealized aneurysm used for phantom manufacturing and
CFD discretization; (b) MRI setup with the gear pump (1), wave guide through rf-shield (2),
flow meter (3), MR-scanner (4) and the 32-channel head coil with the phantom (5) [26].

of the Local Ensemble Kalman Filter (LEKF) of Ott et al. [29] and the Ensemble Transform
Kalman Filter (ETKF) of Bishop et al. [30]. The analysis ensemble is formed as a weighted
average of the background ensemble mean and the observations. Using background and obser-
vation uncertainties, the weights are determined in a way, such that the analysis ensemble mean
best fits the given background and observation probability distributions.

With the implementation of the localization, local analyses at each model grid point are
obtained. Only observations within a local region surrounding the grid point are accounted for
the desired local analysis. The localization scheme enables efficient parallel computation of the
analysis model state and limits the number of needed ensemble members. For the current data
assimilation experiment a localization radius of 3 mm was chosen.

The following section contains a short summary of the LETKF algorithm. The inputs of the
steps below are:

• m-dimensional velocity vectors describing the backgorund ensemble {xb(i) : i = 1, 2, ..., k}
at m grid points for k ensemble members. The ensembles are calculated by k different
CFD simulations.

• The s-dimensional observation vector yo in the form of a velocity vector obtained from
the PC-MRI measurement.

• An observational operator H to map the state variables from the m-dimensional simula-
tion space to the s-dimensional observation space. In the current data assimilation exper-
iment observations, as well as the background ensemble are velocity values. Therefore,
the current observation operator H is a spatial binning operator which downsamples the
ensemble velocity vectors to the MRI grid resolution.

• An s × s dimensional observation error covariance matrix R based on the noise charac-
teristics of the measurement data.

In a first step global transformations are performed with the background ensemble mem-
bers. Form {xb(i)} into an m × k dimensional matrix X and average the columns to get an

4



F. Schulz, C. Roloff and D. Stucht et al.

m-dimensional vector x̄b. Substract this vector from each column of X to get Xb.

x̄b = k−1

k∑
i=1

X(i)

Xb(i) = X(i) − x̄b

(1)

By applying the spatial binning observational operator H to each column of X, the state vector
in the model space is transfered to the observational space, followed by a repetition of the
previous transformations (equation (1)) with the resulting matrix.

Y = Hl(X)

ȳb = k−1

k∑
i=1

Y(i)

Yb(i) = Y(i) − ȳb

(2)

From this point on local calculations at each model grid point j can be performed, which results
in faster convergence of the algorithm due to parallel computations. For each j observations are
chosen to be used in the local analysis of a certain grid point. The analysis error covariance
matrix P̃

a
(j) is calculated and used to compute the weight vector wa(j).

P̃
a
(j) =

[
(k − 1)I/(1 + r) +

[
Yb(j)

]T
R−1(j)Yb(j)

]−1

wa(j) = P̃
a
(j)

{[
Yb(j)

]T
R(j)−1

[
yo(j)−H(x̄b)(j)

]} (3)

The desired amount of multiplicative covariance inflation r = 1.05 is added to increase the back-
ground error. This avoids underestimating the background uncertainty with a small ensemble
size.

Wa(j) = [(k − 1)P̃
a
(j)]1/2

W(j) = Wa(j) + wa(j)
(4)

With the weight vector and perturbations, the analysis mean state can be calculated. In the
current study it provides an improved state estimate for the velocity field inside the idealized
aneurysm geometry. In addition to that, the analysis ensemble members are formatted, which
can be used as initial conditions for ensemble simulations in the subsequent step of a transient
data assimilation experiment.

x̄a
l (j) = x̄b

l (j) + Xb
l (j)w

a(j){
x
a(i)
l (j)

}
= Xb

n(j)X
b
l (j)W(j) + x̄b

l (j)
(5)

2.4 Validation

The generation of a quantitative gold standard is one of the main challenges in the formu-
lation of a suitable data assimilation experiment. High-resolution stereoscopic PIV measure-
ment [26] obtained from a vertical slice in the center of the idealized aneurysm geometry pro-
vide a unique possibility for validation. The resulting PIV based velocity fields are sufficiently
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accurate to validate the data assimilation procedure. The Root-Mean Square Error (RMSE) be-
tween PIV and MRI or analysis, respectively is calculated. To further validate the calculated
analysis with respect to physical accuracy, the divergence of the velocity field is calculated. The
incompressible flow field inside the aneurysm should fullfill div(−→v ) = 0.

To enable reasonable comparisons between the different modalities, the resulting data were
registered with the implementation of an Iterative Closest Point (ICP) algorithm. Difficulties in
the registration process rises due to geometric distortions in the PC-MRI data. These artefacts
increase with the distance to the measurement center, which was chosen to be in the center of
the aneurysm sack. For registration purposes, the distorted parts of afferent and efferent vessels
are cut, which results in an improved registration of the volume of interest.

3 RESULTS

3.1 PC-MRI data

Figure 3a presents the flow field as well as divergence distribution at different slices acquired
from the PC-MRI data. Due to the chosen small flow rate (Q=227 mL/min) laminar flow is
ensured inside the aneurysm. The velocity fields suffer from acquisition noise and low spatial
resolution, both make an accurate definition of the geometric boundaries difficult. In a laminar,
incompressible flow field, the divergence should be zero. Data acquired by Phase-Contrast MRI
measurements does not automatically fullfill this constraint. Divergence calculated at different
slices in the aneurysm geometry highly differs from div(−→v ) = 0.

3.2 Data Assimilation

To ensure that the number of ensembles used to calculate the analysis is statistically repre-
sentative, the RMSE is calculated in dependency of different amounts of ensemble members
used in the data assimilation experiment. To suppress the influence of outliers at the geome-
try edges, different subvolumina are defined in which the RMSE values are compared (figure
2a). Outliers occur due to geometric misfits between MRI, CFD and PIV data, mainly caused
by acquisition based distortions of the MRI data. For the current assimilation experiment an
ensemble of 10 is chosen to be statistically representative.

Figure 3b represents the velocity fields and divergence of the analysis, the outcome of the
data assimilation step. A qualitative comparison between the calculated analysis and the MRI
based data reveals a reduction of noise and improvement of image resolution. The latter was
achieved by using the CFD grid resolution in the data assimilation algorithm to calculate the
analysis. The Navier-Stokes equations as the basis for the ensemble simulations fullfill con-
servations laws, which results in physically accurate calculated analyses. Divergence in the
velocity fields was significantly reduced after the assimilation step.

Figure 4 compares the MRI data and analysis with a vertical slice in the center of the ide-
alized aneurysm. MRI data and analysis are interpolated onto the PIV grid for the calculation
of the RMSE in the predefined subvolumina. The small velocity peak at the transition from the
aneurysm sack to the efferent vessel completely vanishes in the PC-MRI data. Although, the
velocity values are still underestimated by the calculated analysis, the assimilation step was able
to reconstruct the flow characteristics at the outlet more accurately. The qualitative investigation
is supported by the calculation of the RMSE in all three subvolumina. In two cases the RMSE
is significantly reduced by 38 % and 89 %, respectively, whereas for subvolume 2 the RMSE
only decreases by 27 %.
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(a) Subvolumina for RMSE (b) RMSE in dependence of used ensemble mem-
bers

Figure 2: The RMSE in different areas of the aneurysm (a) is calculated in dependency of the
number of used ensemble members in the data assimilation algorithm. For the systematic vari-
ation of ensemble members, the entries of the observation error covariance matrix are increased
to better depict the influence of ensemble simulations

4 DISCUSSION

Flow investigation using Phase-Contrast MRI results in low resolution, noisy images. Optical-
based stereoscopic PIV measurements provide high-resolution velocity fields, but can not be
used for in-vivo applications. The current study uses PIV as a validation criteria for the in-
troduced data assimilation algorithm. An Ensemble Transform Kalman Filter improves the
flow prediction in the geometry of an idealized intracranial aneurysm. Although, measured and
assimilated flow fields qualitatively predict similar flow characteristics, acquisition noise and
artifacts disturb the MRI based velocity fields. Resulting flow fields are not divergence-free,
which reduces the physical correctness of the measured data. With the use of the assimilation
algorithm conservation laws are introduced into the measurement data, which moves the diver-
gence field closer to zero. By increasing the resolution of the velocity in the analysis, small
velocity peaks can be reconstructed that are low-pass filtered in the original measurement data.

In addition to the improvement of physical correctness, the assimilation step moves the ve-
locity field closer to the generated ground truth. The RMSE for the pre-defined subvolumina
is reduced by the data assimilation step. Nevertheless, MRI as well as analysis based velocity
fields seem to underestimate the general velocity values in comparison to the PIV data. This
phenomena also occurs in areas with a uniform velocity distribution, hence downsampling by
velocity averaging can not play a major role. These findings lead to the assumption, that it
is not only stochastic errors resulting in measurement noise that play a role in the PC-MRI
acquisition sequence, rather that systematic deviations also have an influence. Investigations
in previous studies, in which PC-MRI data generally underestimates the velocity values, sup-
port this fact [26]. Possible factors could be a distortion of the images caused by gradient
inhomogenities in the acquisition sequence. To further reduce the RMSE in the assimilated
velocity fields a correct quantification of the systematic error sources is essential, this can be
incorporated into the data assimilation algorithm. In a next step, the described data assimila-
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(a) PC-MRI data (b) Analyis

Figure 3: Velocity magnitude and divergence for PC-MRI data (a) and analyis (b) at different
cut planes through the underlying geometry.

tion approach is applied to a 3D pulsatile cardiac cycle. Here, specific focus will be payed
to the amount of ensemble members needed, which can hopefully be reduced in comparison
to [22] with the introduced localization procedure. For patient-specific considerations one of
the main difficulties is the accurate definition of geometric boundaries, which will also be a
main component in further studies. Incorporating uncertain boundaries of the geometry into the
assimilation algorithm could make it suitable for the clinical routine. Further ideas include the
projection onto a divergence-free subspace previous to the assimilation step or direct assimila-
tion of phase-difference data by mapping the simulated variables onto the observation space by
an inverse observation operator.

5 CONCLUSION

The current study assimilates the flow field in an idealized aneurysm by combining data from
numerical simulations together with measured PC-MRI velocity fields. The introduction of PIV
measurements originating from the same geometry ensures proper quantitative validation. For
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(a) velocity distribution

(b) RMSE

Figure 4: (a) Qualitative comparison of the velocity distribution between all three modalities in
PIV grid resolution; (b) RMSE calculation for measured MRI data and calculated analysis in
the predefined subvolumina.

the first time the LETKF was used for hemodynamic investigations, which enables the calcula-
tion of local analyses. The data assimilation algorithm successfully calculates a high resolution
divergence-free velocity field inside the aneurysm geometry. It was able to reconstruct small
velocity peaks that have been filtered out by the MRI measurement and reduced the RMSE of
the analysis state estimate in comparison to the PC-MRI data.
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